Очередная победа Deep Mind: после шахмат и го искусственный интеллект покорил StarCraft

43

В ноябре 2017 года, то есть чуть больше года назад, мы писали, что искусственный интеллект пока не в силах одолеть профессиональных игроков в StarCraft. Но не прошло и года, как и этот барьер оказался взят. В прошлом месяце в Лондоне команда из английского подразделения исследования искусственного интеллекта DeepMind тихо заложила новый краеугольный камень в противостоянии людей и компьютеров. В четверг она раскрыла это достижение в трехчасовом стриме на YouTube, в ходе которого люди и роботы сражались не на жизнь, а на смерть.

DeepMind победил людей в StarCraft

Трансляция DeepMind показала, что ее робот с искусственным интеллектом AlphaStar побеждает профессионального игрока в сложной стратегии в реальном времени (RTS) StarCraft II. Чемпион человечества, 25-летний Гжегож Коминц из Польши, отлетел со счетом 5:0. Похоже, программное обеспечение для машинного обучения обнаружило стратегии, неизвестные профессионалам, которые соревнуются за миллионы долларов призовых, которые выдаются ежегодно в одной из самых прибыльных для мира киберспорта игр.

«Это не было похоже ни на один StarCraft, в который я играл», заявил Коминц, известный профессионал под ником MaNa.

Подвиг DeepMind является самым сложным в длинной цепочке состязаний, которые компьютеры навязывали лучшим из мира людей в играх и в которых побеждали. Шашки пали в 1994, шахматы в 1997, в 2016 году AlphaGo покорил игру го. Робот для StarCraft — самый мощный игрок из мира искусственного интеллекта; и его приход ждали.

AlphaStar появился примерно шесть лет назад в истории машинного обучения. Хотя победа AlphaGo в 2016 году была ошеломляющей — эксперты го считали, что этот момент наступит как минимум десятью годами позже — победа AlphaStar кажется более-менее прибывшей по расписанию. К настоящему времени ясно, что при достаточном количестве данных и вычислительной мощности машинное обучение может справиться со сложными, но конкретными проблемами.

Читайте также »   В Samsung готовят смартфон с расширяемым дисплеем (6 фото)

Марк Ридл, доцент Технологического института Джорджии, нашел новости четверга захватывающими, но не потрясающими. «Мы уже дошли до этой точки, так что это был только вопрос времени. В некотором смысле, побеждать людей в играх стало скучно».

Видеоигры вроде StarCraft математически сложнее, чем шахматы или го. Количество действительных позиций на доске го представляет собой единицу с 170 нулями, а эквивалент в StarCraft оценивается как 1 с 270 нулями, не меньше. Создание и управление военными юнитами в StarCraft требует от игроков выбора и выполнения многих других действий, а также принятия решения без возможности видеть каждый шаг оппонента.

DeepMind предолел эти крутые барьеры с помощью мощных чипов TPU, которые Google изобрел для повышения мощности машинного обучения. Компания адаптировала алгоритмы, разработанные для обработки текста под задачу определения действий на поле битвы, которые приводят к победе. AlphaStar обучался в StarCraft на записях полумиллиона игр между людьми, затем играл с постоянно улучшающимися клонами самого себя в виртуальной лиге, что представляет собой своего рода цифровую эволюцию. Лучшие боты, появившиеся в этой лиге, накапливали опыт, эквивалентный геймплею 200 лет.

AlphaStar, который одолел MaNa, далеко не всесильный. На данный момент робот может играть только за одну из трех рас, доступных в StarCraft. В дополнение к нечеловечески долгому опыту игры, DeepMind также по-другому воспринимает эту игру. Он видит все, что происходит в игре, однвоременно, тогда как MaNa нужно было перемещаться по карте, чтобы увидеть, что происходит. AlphaStar также обладает более высокой точностью управления и нацеливания юнитов, чем человек, владеющий компьютерной мышью, хотя время реакции компьютера и меньше, чем у профессионального геймера.

Несмотря на эти огрехи, Ридл и другие эксперты целиком приветствовали работу DeepMind. «Это было очень впечатляющей», говорит Цзе Тан, исследователь независимого исследовательского института ИИ OpenAI, работающий над ботами, которые играют в Dota 2, самую прибыльную для киберспорта игру в мире. Такие трюки с видеоиграми могут иметь потенциально полезные побочные эффекты. Алгоритмы и код, которые OpenAI использовал для освоения Dota в прошлом году, с переменным успехом были адаптированы, чтобы сделать руки роботов более ловкими.

Читайте также »   В Дубае будут продавать кофе приготовленный в космосе

Тем не менее, AlphaStar иллюстрирует ограничение современных узкоспециализированных систем машинного обучения, говорит Джулиан Тогелиус, профессор Нью-Йоркского университета и автор недавно вышедшей книги об играх и искусственном интеллекте. В отличие от своего человеческого противника, новый чемпион DeepMind не может играть в полную силу на разных игровых картах или за разные расы инопланетян в игре без продолжительного дополнительного обучения. Также он не может играть в шашки, шахматы или более ранние версии StarCraft.

Эта неспособность справиться даже с небольшими сюрпризами является проблемой для многих ожидаемых приложений ИИ, таких как автономные автомобили или адаптируемые боты, которые исследователи называются общим искусственным интеллектом (AGI, ОИИ). Более значимая битва между человеком и машиной может быть своего рода десятиборьем, с настольными играми, видеоиграми и финалом в Dungeons and Dragons.

Ограничения узкоспециализированного искусственного интеллекта, казалось, проявились, когда MaNa играл в показательную игру против AlphaStar, который был ограничен просмотром карты по типу человека, по одному квадрату за раз. Данные DeepMind показали, что он почти так же хорош, как и тот, что обыграл MaNa в пяти играх.

Новый бот быстро собрал армию, достаточно мощную, чтобы сокрушить своего соперника-человека, но MaNa использовал умные маневры и опыт поражений, чтобы сдержать силы ИИ. Задержка дала ему время, чтобы собрать собственные войска и победить.

Чтобы найти больше интересных новостей, читайте нас в Дзен.

Источник

Скорая Компьютерная помощь.